Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atten Percept Psychophys ; 85(4): 1253-1266, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36720781

RESUMO

The approximate number system (ANS) is thought to be an innate cognitive system that allows humans to perceive numbers (>4) in a fuzzy manner. One assumption of the ANS is that numerosity is represented amodally due to a mechanism, which filters out nonnumerical information from stimulus material. However, some studies show that nonnumerical information (e.g., spatial parameters) influence the numerosity percept as well. Here, we investigated whether there is a cross-modal transfer of spatial information between the haptic and visual modality in an approximate cross-modal number matching task. We presented different arrays of dowels (haptic stimuli) to 50 undergraduates and asked them to compare haptically perceived numerosity to two visually presented dot arrays. Participants chose which visually presented array matched the numerosity of the haptic stimulus. The distractor varied in number and displayed a random pattern, whereas the matching (target) dot array was either spatially identical or spatially randomized (to the haptic stimulus). We hypothesized that if a "numerosity" percept is based solely on number, neither spatially identical nor spatial congruence between the haptic and the visual target arrays would affect the accuracy in the task. However, results show significant processing advantages for targets with spatially identical patterns and, furthermore, that spatial congruency between haptic source and visual target facilitates performance. Our results show that spatial information was extracted from the haptic stimuli and influenced participants' responses, which challenges the assumption that numerosity is represented in a truly abstract manner by filtering out any other stimulus features.


Assuntos
Estudantes , Transferência de Experiência , Humanos , Percepção Visual/fisiologia
2.
Atten Percept Psychophys ; 84(3): 943-959, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064556

RESUMO

The Approximate Number System (ANS) is conceptualized as an innate cognitive system that allows humans to perceive numbers of objects or events (>4) in a fuzzy, imprecise manner. The representation of numbers is assumed to be abstract and not bound to a particular sense. In the present study, we test the assumption of a shared cross-sensory system. We investigated approximate number processing in the haptic modality and compared performance to that of the visual modality. We used a dot comparison task (DCT), in which participants compare two dot arrays and decide which one contains more dots. In the haptic DCT, 67 participants had to compare two simultaneously presented dot arrays with the palms of their hands; in the visual DCT, participants inspected and compared dot arrays on a screen. Tested ratios ranged from 2.0 (larger/smaller number) to 1.1. As expected, in both the haptic and the visual DCT responses similarly depended on the ratio of the numbers of dots in the two arrays. However, on an individual level, we found evidence against medium or stronger positive correlations between "ANS acuity" in the visual and haptic DCTs. A regression model furthermore revealed that besides number, spacing-related features of dot patterns (e.g., the pattern's convex hull) contribute to the percept of numerosity in both modalities. Our results contradict the strong theory of the ANS solely processing number and being independent of a modality. According to our regression and response prediction model, our results rather point towards a modality-specific integration of number and number-related features.


Assuntos
Percepção do Tato , Mãos , Humanos , Percepção do Tato/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...